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Abstract—Recent advances in Xilinx’s FPGA hardware and 
commercial software design tools, spurred in large part by the 
DOD’s Joint Tactical Radio System initiative, offer the possibility 
of incorporating dynamic partial reconfiguration (PR) into high-
performance, embedded systems outside of academic research 
laboratories. PR can provide the flexibility and run-time 
reconfigurability that no pure hardware or software solution can 
offer.  By multiplexing the hardware resources of a single 
programmable device with time-independent tasks, a common 
architecture in DOD systems, one FPGA can handle the same 
processing workload as a multi-device equivalent.  This paper 
analyzes the performance impact of using PR to perform remote 
updating, an important capability often used in embedded
applications.

I. INTRODUCTION

ENERICALLY, an SRAM-based FPGA is a multiprocessing 
device in that multiple, user-defined hardware modules 

can operate in parallel and independently within the same chip.  
One of the great advantages of such a device is the ability to 
modify its configuration memory easily and at any time.  PR 
enhances this paradigm by reconfiguring only a portion of the 
chip’s configuration memory, allowing the user to load and 
unload these functional hardware modules without interrupting 
or resetting the rest of the device.  Despite this advantage, 
commercial interest in PR has never materialized due mainly 
to a lack of supporting software tools and merciless design 
flows.  Nevertheless, different academic approaches have been 
developed to incorporate PR into embedded systems using the 
Virtex-II FPGA [1-2].  Recently, however, the release of the 
Virtex-4 and Virtex-5 series of FPGAs, with their tile-based 
frame architectures, coupled with the lucrative software-
defined radio market, has pushed Xilinx to engineer a 
workable PR design flow [3].  While still unreleased to the 
general public, the new design flow eliminates many of the 
burdensome requirements put in place by the previous flow [4]
and now supports the Virtex-4 (though not yet the Virtex-5).

Unfortunately, due to the relatively recent unveiling of this
new design flow, as well as the still restricted nature of its 
release, there exists a vacuum in research and results exploring
high-performance PR systems targeting these new devices.  In 
response, we present a study of the performance impact 
(timing, resource utilization, and other metrics) of the new 
design flow when targeting Virtex-4 FPGAs, with remote 
updating, an important usage of PR, as a platform for analysis.

II. TARGET APPLICATION

Although commercial FPGAs have enjoyed great success as 
development and testing platforms, their use in embedded 

applications has been limited due to their reduced flexibility 
after field-deployment and relative high cost.  If an embedded 
FPGA’s reconfigurable resources become static, the device
turns into an expensive, power-hungry, low-performance 
ASIC.  Thus, for FPGAs to become more practical as end-use 
devices, there needs to be a way to maintain true field-
reprogrammability once deployed, i.e., the use of remote 
updating.  Remote updating for FPGAs is the equivalent of in-
application programming for microprocessors and is used to 
dynamically tailor the hardware to the application’s needs in 
real-time.

Traditionally, an external configuration controller, usually a 
separate FPGA or microprocessor, performs remote updating.  
In the most generic sense, bitstreams that define hardware 
modules are sent to this device from a local or remote storage, 
over some type of communication link (e.g. MIL-STD-1553).
The external controller then proceeds to fully reconfigure the 
user FPGA.  This baseline approach has distinct advantages, 
namely that it provides an extremely flexible development 
environment since 100% of the user FPGA logic/routing 
resources are available for processing with no reconfiguration 
overhead or performance degradation.

Unfortunately, the need for an external controller presents 
undesirable drawbacks.  Because the entire user FPGA is
reconfigured, a full device bitstream must be transmitted over 
the communication link even if the designer only wishes to 
change a small portion of the design.  This requirement results 
in a needlessly high data transfer, which is especially
detrimental in bandwidth-limited applications, such as satellite 
payloads, where the update bitstreams may not be stored on-
board.  Furthermore, fully reconfiguring the user FPGA
produces the longest possible reconfiguration period, 
translating into lost processing time.

A second drawback is the increased component count and 
PCB requirements necessary to accommodate an external 
device.  Besides increasing the cost of the design, the extra
complexity allows more failure points to exist in all phases of 
the system’s lifetime (fabrication, assembly, testing, 
deployment, etc.).  Most DOD designs are particularly affected 
since they must be qualified to strict environmental standards 
with regard to shock, vibration, ESD, etc.

In this paper, we describe an approach for configuration 
control in which we embed the controller within the user 
FPGA.  By using the Internal Configuration Access Port 
(ICAP) to perform partial reconfiguration, the remote update is
performed in-situ, eliminating the need for an external device.  
In addition to mitigating many of the disadvantages previously
mentioned, there are many advantages inherent in this 
approach. Most importantly, unrelated processing can 

Evaluating Partial Reconfiguration for Embedded FPGA Applications

G

Ross Hymel, Alan D. George, and Herman Lam
{hymel, george, lam}@chrec.org

NSF Center for High-Performance Reconfigurable Computing (CHREC), University of Florida



2

continue uninterrupted during partial device reconfiguration,
automatically maintaining state information.  The remainder of 
this paper analyzes the performance impact of incorporating 
remote updating into three permutations of a generic PR 
architecture targeting an XC4VLX25 FPGA.

III. EXPERIMENTAL ARCHITECTURES

In order to facilitate PR in real hardware with a 
commercially-available design flow, key design issues and 
trade-offs must be addressed, including the number of partially 
reconfigurable regions (PRRs), the PRR shape, size, and 
placement, the PRR’s access to the global clock network and
I/O pads, and the communication interface amongst different 
PRRs and the static portion of the design.  A complete 
description of each experimental study will appear in the full 
presentation, while a condensed version appears here.

Each design permutation contains a static communication 
and configuration controller, as well as a different number of 
PRRs, ranging from one PRR of maximal size, to two side-by-
side PRRs, to four PRRs arranged in a 2x2 fashion.  Each of 
the regions has a generic black-box, top-level interface.  The 
advantage of such an approach is that a designer can use any 
high- or low-level tool to synthesize the PRR, so long as the 
top-level interfaces match.  Then the designer need only run an 
existing script that automatically handles the details of the PR 
design flow to generate the partial bitstreams.

We evaluated each design permutation using different high-
performance computing cores, including Radix-4 FFT, AES, 
ARM7 soft-core processing, and others.  We measured the 
minimum clock period at which each design could run twice, 
once when the design operated without any PR modifications 
and once after plugging into the experimental PR architecture.  
We also measured the size of the programming bitstream twice 
in the same fashion.
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Figure 1: Measured Effects of PR vs. non-PR Baseline

Figure 1 displays a set of average measured PR performance 
effects, including the bitstream size reduction, the PR 
overhead of each design, and the decrease in maximum clock 
frequency due to PR. The PR overhead consists of resources 
that the FPGA uses to facilitate the design flow (e.g. bus 

macros) but that do not contribute to processing.  The clock 
frequency numbers are split into two categories, one for all 
designs and one for designs that originally operated at less 
than 100 MHz.  The discrepancy is due to a single enable net 
in the static region whose purpose is to put the PRRs into a 
known state during reconfiguration.  This net is most often the 
critical path for designs over 100 MHz due to its length and
fanout.  In absolute terms, the results averaged across all 
design permutations are -162 KB, +727 slices, -57.6 MHz, and 
-8.09 MHz, respectively.  In addition, the relative percentages 
should remain constant across different device sizes.  The full 
presentation will include a detailed breakdown of these results.

IV. CONCLUSIONS

The use of partial reconfiguration in conjunction with 
commercial FPGAs and software tools can provide a reliable, 
resource-saving, and flexible means for updating the 
processing load of a deployed programmable device.  By time-
multiplexing the device, the designer has, in effect, an FPGA 
that contains more resources than are actually physically 
present, providing multiprocessing across both time and space.  
This method not only reduces the reconfiguration time but also 
the amount of bitstream data.  Furthermore, using a generic 
architecture simplifies the design flow at the hardware level to 
allow rapid system development by designers untrained in the
nuances of PR.  These factors are especially important in DOD 
systems, as the generic hardware can be qualified to the 
necessary environmental standards and then reused in other
platforms without knowledge of the low-level details.

Future directions for this work include exploring “full” 
partial reconfiguration.  As Virtex-4 devices contain two 
separate ICAP primitives, we have the ability to reconfigure 
the reconfiguration engine itself by switching configuration 
control between different regions.  Doing so would allow us to
update the previously static controller, e.g., to change the 
encryption standard or the communication protocol it uses.
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