
1

Abstract—Recent advances in Xilinx’s FPGA hardware and
commercial software design tools, spurred in large part by the
DOD’s Joint Tactical Radio System initiative, offer the possibility
of incorporating dynamic partial reconfiguration (PR) into high-
performance, embedded systems outside of academic research
laboratories. PR can provide the flexibility and run-time
reconfigurability that no pure hardware or software solution can
offer. By multiplexing the hardware resources of a single
programmable device with time-independent tasks, a common
architecture in DOD systems, one FPGA can handle the same
processing workload as a multi-device equivalent. This paper
analyzes the performance impact of using PR to perform remote
updating, an important capability often used in embedded
applications.

I. INTRODUCTION

ENERICALLY, an SRAM-based FPGA is a multiprocessing
device in that multiple, user-defined hardware modules

can operate in parallel and independently within the same chip.
One of the great advantages of such a device is the ability to
modify its configuration memory easily and at any time. PR
enhances this paradigm by reconfiguring only a portion of the
chip’s configuration memory, allowing the user to load and
unload these functional hardware modules without interrupting
or resetting the rest of the device. Despite this advantage,
commercial interest in PR has never materialized due mainly
to a lack of supporting software tools and merciless design
flows. Nevertheless, different academic approaches have been
developed to incorporate PR into embedded systems using the
Virtex-II FPGA [1-2]. Recently, however, the release of the
Virtex-4 and Virtex-5 series of FPGAs, with their tile-based
frame architectures, coupled with the lucrative software-
defined radio market, has pushed Xilinx to engineer a
workable PR design flow [3]. While still unreleased to the
general public, the new design flow eliminates many of the
burdensome requirements put in place by the previous flow [4]
and now supports the Virtex-4 (though not yet the Virtex-5).

Unfortunately, due to the relatively recent unveiling of this
new design flow, as well as the still restricted nature of its
release, there exists a vacuum in research and results exploring
high-performance PR systems targeting these new devices. In
response, we present a study of the performance impact
(timing, resource utilization, and other metrics) of the new
design flow when targeting Virtex-4 FPGAs, with remote
updating, an important usage of PR, as a platform for analysis.

II. TARGET APPLICATION

Although commercial FPGAs have enjoyed great success as
development and testing platforms, their use in embedded

applications has been limited due to their reduced flexibility
after field-deployment and relative high cost. If an embedded
FPGA’s reconfigurable resources become static, the device
turns into an expensive, power-hungry, low-performance
ASIC. Thus, for FPGAs to become more practical as end-use
devices, there needs to be a way to maintain true field-
reprogrammability once deployed, i.e., the use of remote
updating. Remote updating for FPGAs is the equivalent of in-
application programming for microprocessors and is used to
dynamically tailor the hardware to the application’s needs in
real-time.

Traditionally, an external configuration controller, usually a
separate FPGA or microprocessor, performs remote updating.
In the most generic sense, bitstreams that define hardware
modules are sent to this device from a local or remote storage,
over some type of communication link (e.g. MIL-STD-1553).
The external controller then proceeds to fully reconfigure the
user FPGA. This baseline approach has distinct advantages,
namely that it provides an extremely flexible development
environment since 100% of the user FPGA logic/routing
resources are available for processing with no reconfiguration
overhead or performance degradation.

Unfortunately, the need for an external controller presents
undesirable drawbacks. Because the entire user FPGA is
reconfigured, a full device bitstream must be transmitted over
the communication link even if the designer only wishes to
change a small portion of the design. This requirement results
in a needlessly high data transfer, which is especially
detrimental in bandwidth-limited applications, such as satellite
payloads, where the update bitstreams may not be stored on-
board. Furthermore, fully reconfiguring the user FPGA
produces the longest possible reconfiguration period,
translating into lost processing time.

A second drawback is the increased component count and
PCB requirements necessary to accommodate an external
device. Besides increasing the cost of the design, the extra
complexity allows more failure points to exist in all phases of
the system’s lifetime (fabrication, assembly, testing,
deployment, etc.). Most DOD designs are particularly affected
since they must be qualified to strict environmental standards
with regard to shock, vibration, ESD, etc.

In this paper, we describe an approach for configuration
control in which we embed the controller within the user
FPGA. By using the Internal Configuration Access Port
(ICAP) to perform partial reconfiguration, the remote update is
performed in-situ, eliminating the need for an external device.
In addition to mitigating many of the disadvantages previously
mentioned, there are many advantages inherent in this
approach. Most importantly, unrelated processing can

Evaluating Partial Reconfiguration for Embedded FPGA Applications

G

Ross Hymel, Alan D. George, and Herman Lam
{hymel, george, lam}@chrec.org

NSF Center for High-Performance Reconfigurable Computing (CHREC), University of Florida

2

continue uninterrupted during partial device reconfiguration,
automatically maintaining state information. The remainder of
this paper analyzes the performance impact of incorporating
remote updating into three permutations of a generic PR
architecture targeting an XC4VLX25 FPGA.

III. EXPERIMENTAL ARCHITECTURES

In order to facilitate PR in real hardware with a
commercially-available design flow, key design issues and
trade-offs must be addressed, including the number of partially
reconfigurable regions (PRRs), the PRR shape, size, and
placement, the PRR’s access to the global clock network and
I/O pads, and the communication interface amongst different
PRRs and the static portion of the design. A complete
description of each experimental study will appear in the full
presentation, while a condensed version appears here.

Each design permutation contains a static communication
and configuration controller, as well as a different number of
PRRs, ranging from one PRR of maximal size, to two side-by-
side PRRs, to four PRRs arranged in a 2x2 fashion. Each of
the regions has a generic black-box, top-level interface. The
advantage of such an approach is that a designer can use any
high- or low-level tool to synthesize the PRR, so long as the
top-level interfaces match. Then the designer need only run an
existing script that automatically handles the details of the PR
design flow to generate the partial bitstreams.

We evaluated each design permutation using different high-
performance computing cores, including Radix-4 FFT, AES,
ARM7 soft-core processing, and others. We measured the
minimum clock period at which each design could run twice,
once when the design operated without any PR modifications
and once after plugging into the experimental PR architecture.
We also measured the size of the programming bitstream twice
in the same fashion.

0

5

10

15

20

25

30

35

40

Bitstream
Reduction

Overhead Max. Freq.
Reduction

Max. Freq.
Reduction

(<100 MHz)

%
 C

h
an

g
e

 f
ro

m
 n

o
n

-P
R

 B
a

se
lin

e

1 PRR 2 PRRs 4 PRRs

Figure 1: Measured Effects of PR vs. non-PR Baseline

Figure 1 displays a set of average measured PR performance
effects, including the bitstream size reduction, the PR
overhead of each design, and the decrease in maximum clock
frequency due to PR. The PR overhead consists of resources
that the FPGA uses to facilitate the design flow (e.g. bus

macros) but that do not contribute to processing. The clock
frequency numbers are split into two categories, one for all
designs and one for designs that originally operated at less
than 100 MHz. The discrepancy is due to a single enable net
in the static region whose purpose is to put the PRRs into a
known state during reconfiguration. This net is most often the
critical path for designs over 100 MHz due to its length and
fanout. In absolute terms, the results averaged across all
design permutations are -162 KB, +727 slices, -57.6 MHz, and
-8.09 MHz, respectively. In addition, the relative percentages
should remain constant across different device sizes. The full
presentation will include a detailed breakdown of these results.

IV. CONCLUSIONS

The use of partial reconfiguration in conjunction with
commercial FPGAs and software tools can provide a reliable,
resource-saving, and flexible means for updating the
processing load of a deployed programmable device. By time-
multiplexing the device, the designer has, in effect, an FPGA
that contains more resources than are actually physically
present, providing multiprocessing across both time and space.
This method not only reduces the reconfiguration time but also
the amount of bitstream data. Furthermore, using a generic
architecture simplifies the design flow at the hardware level to
allow rapid system development by designers untrained in the
nuances of PR. These factors are especially important in DOD
systems, as the generic hardware can be qualified to the
necessary environmental standards and then reused in other
platforms without knowledge of the low-level details.

Future directions for this work include exploring “full”
partial reconfiguration. As Virtex-4 devices contain two
separate ICAP primitives, we have the ability to reconfigure
the reconfiguration engine itself by switching configuration
control between different regions. Doing so would allow us to
update the previously static controller, e.g., to change the
encryption standard or the communication protocol it uses.

V. ACKNOWLEDGEMENTS

This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant No. EEC-
0642422. The authors gratefully acknowledge tools and
equipment provided by Sandia National Laboratories and
Xilinx that helped make this work possible.

VI. REFERENCES

[1] M. Ullmann, B. Grimm, M. Hübner, and J. Becker, “An
FPGA Run-Time System for Dynamical On-Demand
Reconfiguration,” Proc. IEEE Parallel and Distributed
Processing Symposium, Santa Fe, NM, Apr. 26-30, 2004.

[2] M. Hübner, J. Becker, “Exploiting Dynamic and Partial
Reconfiguration for FPGAs – Toolflow, Architecture, and
System Integration,” Proc. 19th SBCCI Symp. on Integrated
Circuits and Systems Design, Ouro Preot, Brazil, 2006.

[3] Early Access Partial Reconfiguration User Guide, UG208
(v1.1), Xilinx Inc., Mar. 6, 2006.

[4] Two Flows for Partial Reconfiguration: Module Based or
Difference Based, XAPP290 (v1.2), Xilinx Inc., Sept. 9, 2004.

